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In this paper, we propose the ultradiscrete optimal velocity model, a cellular-automaton model for traffic
flow, by applying the ultradiscrete method for the optimal velocity model. The optimal velocity model, defined
by a differential equation, is one of the most important models; in particular, it successfully reproduces the
instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity
model and the modified Korteweg–de Vries �mkdV� equation, a soliton equation. Meanwhile, the ultradiscrete
method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as
an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is
available for generic differential equations and the simulation results reveal that the model obtained reproduces
both absolutely unstable and convectively unstable flows as well as the optimal velocity model.
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I. INTRODUCTION

Started out as research on vehicular traffic, traffic flow has
connected with a wide range of social problems such as traf-
fic jam �1–3�, evacuation in emergency �4,5�, and biological
systems �6�. Also, traffic flow is a good subject to apply
mathematical developments for �7–10�. Highwaylike traffic,
intended in this paper, is modeled as a one-dimensional sys-
tem in which a number of particles move in the same direc-
tion interacting one another. One may regard it as compress-
ible fluid from the macroscopic viewpoint or as a many-body
system of self-driven particles from the microscopic view-
point. Accordingly, there appear a lot of models �1,2,11–14�;
some are coupled differential equations and others are cellu-
lar automata �CA�. CA models are fully discrete, i.e., not
only independent variables but also dependent variables take
integer values, and hence it is quite suitable for computer
simulation.

What makes traffic flow a distinct subject from traditional
physics is that particles in traffic flow have an asymmetric
interaction. Each particle moves mainly under the influence
of the particles in front but in contrast hardly does under that
of the following ones. For this idea, in earlier works �15,16�,
the car-following models were introduced as

ẋn�t + �� = F�hn�t�� �hn�t� = xn+1�t� − xn�t�� , �1�

where F is a function, � is a constant, and xn�t� denotes the
position of the nth particle at time t; accordingly, hn�t� means
the headway to the particle in front, i.e., �n+1�th one. It is
remarkable that the car-following models introduce two fun-
damental ideas: one is time delay for the particle to respond
to the change in traffic situation, and the other is a function
which prescribes the optimal velocity for the distance.
Namely, Eq. �1� means that each particle tends/intends to
adjust its own velocity to the optimal velocity prescribed by
F, which requires a delay �. It is noted that the car-following
model has an exact solution if one chooses F�h�
=V0�1−exp���0 /V0��h−L0���, where V0, L0, and �0 are con-
stants determined empirically �15,16�. Another choice will be
seen below. For the latter purpose, we refer to the function
denoted by F in Eq. �1� as the optimal velocity (OV) function.

If � is small enough to make the approximation ẋn�t+��
� ẋn�t�+�ẍn�t� in Eq. �1�, we have the OV model �12�

ẍn�t� = ��F�hn�t�� − ẋn�t�� , �2�

where ��=1 /�� means the sensitivity of the particle to traffic
situation. The OV model successfully reproduces the linear
instability of uniform flow in which every particle maintains
the same distance from the particle in front. In particular,
high-flux traffic appears as a uniform flow with middle head-
way. �Note that the flux is defined by the product of density
and velocity.� The stability of the OV model changes de-
pending on both the sensitivity and the uniform headway and
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there exists a critical line at which the uniform flow changes
from unstable to stable. If one chooses

F�h� = tanh�h − c� + tanh c �c � 0� , �3�

then one finds the critical point ��c ,bc�= �2,c� ��c and bc
denoting the critical values of the sensitivity and the uniform
distance, respectively� at which the flux reaches its maxi-
mum value �12�. In what follows, we refer to the OV model
with Eq. �3� as the OV model, and the car-following model
with Eq. �3� as the delay OV model. It is remarkable that the
delay OV model also has an exact solution expressed by an
elliptic function �9,17,18�.

In �19�, they show that, around the critical point men-
tioned above, the OV model reduces to the modified
Korteweg–de Vries (mKdV) equation �20�

bT = bXXX − �b3�X �4�

�subscripts X and T denoting partial differentiations in them�.
Actually, in the scaling limit:

� = 2�1 − �2�, hn = c + �− 2�b�X,T� ,

X = 2��n − t�, T =
4

3
�3t , �5�

where the scaling parameter � tends to zero, one obtains Eq.
�4� from Eq. �2� as the lowest order approximation. The
mKdV equation is one of well-known soliton equations and
it admits kink solutions �21�. Kink solutions show a shock
wave with some plateaus and it can describe a traffic jam
propagating to the upper stream. In �19�, they also claim that
a kink solution is selected, independently of the initial con-
dition, by the next-order correction and one therefore ob-
serves a kink solution at the critical point in numerical simu-
lation.

Soliton equations possess quite rich mathematics such as
a series of soliton solutions, hierarchy of equations, and an
infinite number of conserved quantities �20,21�. A N-soliton
solution contains N solitary wave packets, i.e., solitons, each
of which behaves like a particle. One can import this solito-
nic nature directly from soliton equations to CA by using the
ultradiscrete method �22�. The ultradiscrete method is a
nonanalytic limiting procedure to discretize the dependent
variable of difference equations. The obtained CAs with soli-
tonic nature are called the soliton cellular automata �SCA�
or the box and ball systems �BBS� �22,23�. It is, however,
rather complicated to obtain a SCA from a soliton equation
since one has to discretize the soliton equation with respect
to both time and space variables in the first stage. In the
following discussion, we call equations semidiscrete if the
space variable is discrete, and full-discrete if both time and
space variables are discrete. �Note that, each for continuous
soliton equations, there often exist a number of different se-
midiscrete and full-discrete equations that reduce to the same
continuous equation.�

In this paper, we propose the ultradiscrete optimal veloc-
ity (udOV) model derived from the OV model by the ultra-
discrete method and exact solution of the model. Also, we
present numerical simulation results to assess the validity of

the CA model for traffic flow. The present result suggests a
basic relation between deterministic traffic-flow models and
the soliton equations, which contribute to theoretical studies
of traffic flow.

II. ULTRADISCRETE OPTIMAL VELOCITY MODEL

In order to obtain the udOV model, we focus on the fol-
lowing facts: the OV model reduces to the mKdV equation in
an appropriate scaling limit �19�, and the mKdV equation is
transformed into a SCA �24�. In addition, it is crucial that the
delay OV model and the semidiscrete mKdV �sdmKdV�
equation given in �24� are to meet if one supposes a
traveling-wave solution.

A. Ultradiscrete mKdV equation

First, we shall review the ultradiscrete process of the
mKdV equation given in �24�, and see that it is natural to
choose the delay OV model in the ultradiscrete process. To
begin with, we consider the full-discrete mKdV �fdmKdV�
equation proposed in �25� �see also �26��:

v j
t+11 + �v j+1

t+1

1 + av j
t+1 = v j

t 1 + �v j−1
t

1 + av j
t , �6�

where � and a are real parameters, and discrete time and
discrete space variables are denoted, respectively, by super-
scripts and subscripts t and j. �Note that we also use sub-
scripts for partial differentiations as far as it does not cause
confusion.� Taking the limit �→0 after substitution v j

t

=rj�−�t� in Eq. �6� yields the sdmKdV equation or the modi-
fied Lotka-Volterra (mLV) equation

ṙj = rj�1 + arj��rj+1 − rj−1� , �7�

where the time variable becomes continuous and we denote
by dot differentiation in time. Again, as for a scaling param-
eter � which is introduced as

rj = −
1

2a
+ �− 1�s�X,T� ,

X = 	 j −
1

2a
t
�, T =

�3

3
t , �8�

taking the limit �→0, we recover the mKdV equation

sT + 6as2sX +
1

4a
sXXX = 0, �9�

where s=s�X ,T� depends on continuous variables in both
time and space, and subscripts denote partial differentiations
in these variables. Thus, one sees that it is plausible to adopt
Eq. �6� as the fdmKdV equation and Eq. �7� as the sdmKdV
equation.

The ultradiscrete method means the transformation of the
dependent variable in full-discrete equations by the follow-
ing formulas:

� log	exp
A

�
· exp

B

�

 = A + B ,
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lim
�→+0

� log	exp
A

�
+ exp

B

�

 = max�A,B� , �10�

where A and B are called ultradiscrete variables. Namely, the
ultradiscrete method is done by taking the limit where the
dependent variable diverges as the scaling parameter � tends
to zero. One may formally consider that the ultradiscrete
method is to replace multiplication with plus, and plus with
max as well. It is apparent that the commutative, associative,
and distributive laws hold.

Before applying the ultradiscrete method, we introduce
another dependent variable in Eq. �6� as

ṽ j
t =

v j
t

1 + av j
t . �11�

Thus, we have another form of the fdmKdV equation

ṽ j
t+11 + �� − a�ṽ j+1

t+1

1 − aṽ j+1
t+1 = ṽ j

t 1 + �� − a�ṽ j−1
t

1 − aṽ j−1
t . �12�

Then we shall apply the ultradiscrete method for Eq. �12�.
The ultradiscrete variables are introduced for both the con-
tinuous dependent variable and the parameters as

ṽ j
t = exp

Vj
t

�
, � = exp

− D

�
, a = − exp

− A

�
, �13�

where D and A are integers. Taking the limit �→ +0, one
obtains the ultradiscrete mKdV �udmKdV� equation

Vj
t+1 + max�0,Vj+1

t+1 − D,Vj+1
t+1 − A� − max�0,Vj+1

t+1 − A�

= Vj
t + max�0,Vj−1

t − D,Vj−1
t − A� − max�0,Vj−1

t − A� .

�14�

As far as we have integers as the initial value, Vj
t takes inte-

ger values. Especially if 0�A	D then Eq. �14� reduces to
Vj

t+1=Vj
t.

The udmKdV equation realizes the box and ball system
with a carrier �BBSC�, which is an extended BBS. However,
we omit further details since it is not necessary for our later
discussion. Refer to �24,27� for more information about the
BBSC.

B. Delay optimal velocity model

As described in the introduction, it has often been pointed
out that there is a close relation of traffic-flow models to the
soliton theory �9,16–18�. Now, following �18� we show the
direct connection between the delay OV model and the mLV
equation, which has already appeared as a semidiscrete
mKdV equation in Eq. �7�.

We start with the delay OV model in the headway repre-
sentation, i.e.,

ḣn�t + �� = F�hn+1�t�� − F�hn�t�� �15�

�see Eqs. �1� and �3��. Changing the variable,

gn = tanh�hn − c� , �16�

we have

ġn�t� = �1 − gn
2�t���gn+1�t − �� − gn�t − ��� , �17�

where we transfer � to the right-hand side for the later dis-
cussion. Then, if one assumes the traveling-wave solution

gn�t� = G�
� �
 = t + 2n�� , �18�

Eq. �17� yields

G��
� = �1 − G2�
���G�
 + �� − G�
 − ��� . �19�

Meanwhile, the change in the variable in Eq. �7�,

rj = −
1

2a
�1 + r̄ j� , �20�

yields

− 4aṙ̄j = �1 − r̄ j
2��r̄ j+1 − r̄ j−1� . �21�

Consequently, if one assumes

r̄ j = R��� 	� = −
1

4a
t + j�
 , �22�

Eq. �21� coincides with Eq. �19�.
The traveling-wave solution Eq. �18� means a traffic jam

propagating to the upper stream at phase velocity −1 /2�. It is
remarkable that this solution is numerically observed and
also it appears independently of the initial condition. That
means that the traveling-wave solution is stable to perturba-
tions and is manifested as the stationary state in the long time
limit. Some exact solutions of Eq. �19� have been given by
some research groups in different ways �9,17,18�; however, it
is recently proven that these solutions are all identical �28�.

C. Full-discrete optimal velocity model

Now, we introduce the full-discrete optimal velocity
�fdOV� model before the udOV model based on the obser-
vations above. According to Eq. �20�, we also change the
variable in Eq. �6� such as

v j
t = −

1

2a
�1 + v̄ j

t� . �23�

This leads to v̄ j
t = r̄ j�−�t� and we thus have the fdmKdV equa-

tion

4a − 2�

�
�v̄ j

t+1 − v̄ j
t� = �1 − v̄ j

t��1 + v̄ j
t+1�v̄ j+1

t+1

− �1 − v̄ j
t+1��1 + v̄ j

t�v̄ j−1
t , �24�

which reduces to Eq. �21� in �→0.
Instead of Eq. �18�, consider the following reduction in

Eq. �17� �allowing half integers in the subscript�,

gn�t − �� = gn−1/2�t� , �25�

and we can thereby make the equation symmetric in both
time and space. Then, renumbering the space index �i.e.,
multiplying it by two�, Eq. �17� reduces to Eq. �21�. In order
to obtain the fdOV model from Eq. �24�, we assume the
following reduction as the full-discrete analog of Eq. �25�:
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un
t−m = un−1/2

t , �26�

where we denote by un
t the dependent variable for the fdOV

model and m is a positive integer.
Comparing Eq. �18� with Eq. �22�, one finds

un
t = v̄ j

t� �t = − t�/�4a�, n = j/2� . �27�

Then, since −� is thought to be the unit of time in Eq. �24�,
we introduce the unit of time � as �=� / �4a� in Eq. �17�, and
let

un
t = gn��t� and m = �/� . �28�

Thus, Eq. �26� certainly reduces to Eq. �25� in the limit �
→0. Accordingly, we shall consider the following correspon-
dence in Eq. �24�,

v̄ j+1
t+1 = un+1/2

t+1 = un+1
t−m+1, v̄ j−1

t = un−1/2
t = un

t−m, �29�

and thus obtain the full-discrete equation from Eq. �17�. Sup-
pose the approximation mentioned in the introduction: � is
small enough for the reduction in the delay OV model to the
OV model. Then we should take m=1 which means �=�.
Namely, � is also regarded as the minimum unit of time.
Consequently, we obtain the fdOV model as

1 − 2�

�
�un

t+1 − un
t � = �1 − un

t ��1 + un
t+1�un+1

t

− �1 − un
t+1��1 + un

t �un
t−1. �30�

In fact, Eq. �30� is a second-order difference equation con-
taining three sequential points of time: t−1, t, and t+1, and
which is consistent with the OV model, a second-order dif-
ferential equation. Also, Eq. �30� reduces to Eq. �24� if one
assumes Eq. �26�.

D. Ultradiscrete optimal velocity model

We introduce several variables so far; in particular, the
fdOV model Eq. �30� is presented as an equation for an
unphysical variable. In contrast with the case of Eq. �30�, one
may not find a simple equation for the full-discrete variable
corresponding to hn, i.e., a fdOV model corresponding to Eq.
�15�. However, we can obtain the udOV model correspond-
ing to Eq. �15� as seen below. Note that � / �4a�=�.

From Eqs. �11�, �13�, and �23�, one finds

v̄ j
t =

aṽ j
t + 1

aṽ j
t − 1

= tanh
Vj

t − A

2�
. �31�

Then, in view of Eqs. �16�, �28�, and �27�, Eq. �31� suggests
that the ultradiscrete variable Hn

t and parameter C for the
udOV model should be taken as

gn��t� = un
t = tanh

Hn
t − C

2�
, �32�

namely,

hn��t� =
Hn

t

2�
and c =

C

2�
. �33�

Accordingly, the ultradiscrete variable Hn
t has an explicit

meaning: it is the headway discretized with unit length �.
Here, as well as in Eq. �12�, we introduce ũn

t as

ũn
t = exp

Hn
t − C

�
. �34�

Together with Eq. �32�, we thus transform Eq. �30� into

ũn
t+11 + �1 − 4��ũn+1

t

1 + ũn+1
t = ũn

t 1 + �1 − 4��ũn
t−1

1 + ũn
t−1 . �35�

Suppose 0���1 /4 and 1−4�→ +0 when applying the ul-
tradiscrete method, we then introduce another parameter T as

� =
1

4
	1 − exp

− T

�

 �T � 0� . �36�

Consequently, taking the limit �→ +0 after substitution of
Eqs. �34� and �36� into Eq. �35�, we obtain the udOV model

Hn
t+1 + max�0,Hn+1

t − C − T� − max�0,Hn+1
t − C� = Hn

t

+ max�0,Hn
t−1 − C − T� − max�0,Hn

t−1 − C� . �37�

�Note that, as far as T and C are integers, Hn
t also takes

integer values.�
We may also express the udOV model as

Hn
t+1 − Hn

t =�
− Hn

t−1 + C + T �A+�

Hn+1
t − C − T �A−�
Hn+1

t − C �B+�
− Hn

t−1 + C �B−�

Hn+1
t − Hn

t−1 �C��
�T

0

� �38�

where regions �A��, �B��, and �C�� are illustrated in Fig. 1.
This expresses how Hn

t changes depending on Hn+1
t and Hn

t−1:
there are two distinct headways C and C+T, and when Hn

t

T

-T0

0

C

C

C+T

C+T

Hn+1t

Hnt-1

(A )+

(A )-

(B )+ (B )-

O

(C )+

(C )-

Hnt+1 Hnt-

FIG. 1. The increment Hn
t+1−Hn

t is illustrated for each region.
Regions �A��, �B��, and �C�� divided by dashed lines are identical
to those in Eq. �38�. The superscripts + and − show the sign of the
increment in each region. The increment is continuous, and in par-
ticular it takes the value of zero on the gray lines. Note that −T
	Hn

t+1−Hn
t 	T.
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C+T or Hn
t 	C, particles feel safe and maintain their

headways. Then, particles take action at t to have a safe
headway if not so at t−1 �A� ,C��; at the same time t, they
expect the change of the front particle’s headway which will
occur at t+1 if it is not safe at t �B� ,C��. Note that due to
the one-time-step delay of particles to take action, each par-
ticle can foresee the next motion of its front particle. More-
over, since the delay time is assumed to be short, the right-
hand side of Eq. �38� includes only linear terms in Hn

t−1 and
Hn+1

t .

III. SIMULATION OF THE UDOV MODEL

In this section, we present simulation results of the udOV
model with the open boundary conditions; i.e., there are an
infinite number of particles numbered with integers. In order
to investigate the instability to perturbations, we take several
uniform flows each with a constant headway �denoted by h
below� at t=−1 and then impose a perturbation at t=0; i.e.,
the headways of several preceding particles are displaced at
most by �1. We have C=4 and T=3 by reference to the real
data given in �29�: �the length of a car�=5 m, a=2 s−1,
and the inflection point of the OV function �20 m, 15 m/s�. In
the following simulations, we observe N=100 particles and
−1	 t	200, which is enough time for the present system to
reach a steady state. Then, we let ten preceding particles
have disturbed headways.

Figures 2–4 show Hn
t �n=1, . . . ,N� for four points of time

�t=0,10, . . .�, and Hn
t �t−1� for an arbitrary nth particle.

Since the OV function is assumed to be a monotonically
increasing function, a large headway means that the particle
moves at a high speed. In the early stage, we see some fea-
tures common in the figures: the small perturbation initially
imposed grow quickly and particles then have a headway

either smaller than C or larger than C+T �to be precise, the
headway may take these values�; moreover, the headways do
not take values smaller than C−T or larger than C+2T. In
the subsequent stage, we observe distinct patterns according
to the uniform headway h as follows. �i� h	C �Fig. 2�: the
disturbance is amplified and then splits into two opposite
parts, i.e., a free-flow region and a traffic jam. The free-flow
region, increasing in size, moves away to the upper stream,
and eventually all the particles numbered n	N are caught in
the traffic jam. �ii� C�h�C+T �Fig. 3�: a free-flow region,
accompanied by a traffic jam, moves to the upper stream as
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FIG. 2. �Color online� h=C=4. Hn
t at �a� t=0, �b� t=15, �c� t

=70, and �d� t=180. �e� Time evolution of Hn
t �n=40�.
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FIG. 3. �Color online� h=C+T−1=6. Hn
t at �a� t=0, �b� t=10,

�c� t=70, and �d� t=180. �e� Time evolution of Hn
t �n=40�.
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FIG. 4. �Color online� h=C+T=7. Hn
t at �a� t=0, �b� t=10, �c�

t=60, and �d� t=170. �e� Time evolution of Hn
t �n=30�.
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well as in �i�. Then, in this case, an oscillatory pattern fol-
lows, in which particles stop or decelerate when catching up
with the front particle and start or accelerate again as the
headway becomes large enough. Such a state is often re-
ferred to as a stop-and-go state �30�. �iii� hC+T �Fig. 4�:
after the disturbance grows into a traffic jam, it moves to the
upper stream increasing in size. However, particles having
got through the traffic jam take a larger headway than before,
and the traffic jam passes out of the frame after all. In �31�,
such a uniform flow is referred to as convectively unstable in
distinction to the absolutely unstable uniform flow, which
appears in �i�.

The above numerical results can be roughly explained by
Fig. 1. It is apparent that the system is stable when in the
regions denoted by zero. Particles therefore tend to have
headways larger than C+T or smaller than C. Moreover, as
far as the present initial condition is chosen, we conclude
that C−T	Hn

t 	C+2T since −T	Hn
t+1−Hn

t 	T. If h takes
the value from C to C+T, then it always perturbs the steady
state with a constant headway.

IV. EXACT SOLUTION OF THE UDOV MODEL

In this section, we derive an exact solution of the udOV
model from the one-kink solution of the udmKdV equation;
in particular, the ultradiscrete one-kink solution describes a
shock wave traveling with a constant velocity.

A. One-kink solution of the udmKdV equation

We start with the one-kink solution of Eq. �9�:

s�X,T� = �
�− 1

2a
tanh	X +

1

2a
T
 , �39�

which is immediately obtained by assuming a tanh solution.
�The N-kink solution is also given in �32�.� In the same man-
ner, we obtain the semidiscrete one-kink solution of Eq. �21�
as

rj�t� = −
1

2a
�

tanh �

2a
tanh	�j −

tanh �

2a
t
 . �40�

Consider the series expansion: tanh �=�−�3 /3+¯ in Eq.
�40�, and we have

rj�t� = −
1

2a
�

� −
�3

3
+ ¯

2a
tanh	 j −

t

2a

� +

t

6a
�3 + ¯� ,

�41�

which suggests Eq. �8�.
In order to obtain the full-discrete one-kink solution of

Eq. �6�, we use Hirota’s method. Hirota’s method consists of
two steps: the first is to transform the soliton equation into a
system of bilinear equations, and the second is to solve the
bilinear equations. The dependent variables of the bilinear
equations are called the tau function. As far as soliton solu-
tions are concerned, the tau functions have a simple form and

we can hence obtain soliton solutions. Now, we use the full-
discrete tau functions given in �33�, i.e.,

v j
t = �

� j−1
t � j+1

t+1

� j
t� j

t+1 , �42�

where � is a constant. Then, following Hirota’s method we
assume the tau functions as

� j
t = 1 + KjLt, � j

t = 1, �43�

where K and L are the parameters to be determined, as well
as �, by substituting into Eq. �6�. We thereby obtain the kink
solution which reduces to Eq. �40� in the same limit as Eq.
�6� reduces to Eq. �8�:

v j
t = �

1 + LtKj−1

1 + LtKj , � = −
1

a

K�LK − 1�
LK2 − 1

, �44�

where K and L satisfy the dispersion relation,

�� − 1�K2L2 + �K2 − 2�K + 1�L + � − 1 = 0, �45�

where �=� /a. Calculation to show that Eq. �44� reduces to
Eq. �40� in the limit �→0 is relegated to the Appendix.

Before applying the ultradiscrete method, recalling Eq.
�11� we have from Eq. �44�

ṽ j
t = −

1

a

LK − 1

K − 1

K + LtKj

1 + Lt+1Kj+1 . �46�

In applying the ultradiscrete method for Eq. �46�, we assume
that ṽ j

t �0 is always true. Hence, letting in Eq. �46�

K = exp
P

�
, L = exp

Q

�
,

LK − 1

K − 1
= exp

B

�
, �47�

where B is also to be determined by K, one obtains the ul-
tradiscrete kink solution as

Vj
t = A + B + max�P,Pj + Qt� − max�0,�j + 1�P + �t + 1�Q� .

�48�

In addition, we apply the ultradiscrete method for Eq. �45�
and for the definition of B given in Eq. �47�, and thus have
the ultradiscrete dispersion relation for Eq. �48� as

1

2
�Q − max�0,A − D�� = max�P + Q,0� − max�P,0� .

�49�

Then, B is equal to each side of Eq. �49�.

B. Exact kink solution of the udOV model

In the following discussion, we restrict ourselves to K
�1 and LK�1 without loss of generality. �In fact, due to the
symmetry of Eq. �6� and that of Eq. �45�, we have
v j

t�K−1 ,L−1�=Kv j
t�K ,L�; where we denote Eq. �44� by

v j
t�K ,L� to emphasize the parameters therein.� Accordingly,

we have P�0 and B=Q=−max�0,A−D�. If A	D, then Eq.
�14� becomes Vj

t+1=Vj
t, i.e., time dependence vanishes. If A

�D, we have
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Vj
t = A + Q + max�P,Pj + Qt� − max�0,�j + 1�P + �t + 1�Q� ,

�50�

where Q=D−A.
Assume in Eq. �14� that A�D and the traveling-wave

solution

Vj
t = V��� �� = Pj + Qt� , �51�

then we have

V�� + Q� + max�0,V�� + P + Q� − D�

− max�0,V�� + P + Q� − A�

= V��� + max�0,V�� − P� − D� − max�0,V�� − P� − A� .

�52�

Meanwhile, Eq. �50� becomes

V��� = D + max�P,�� − max�0,� + P + Q� . �53�

As well, letting

Hn
t = H�
� �
 = 2kn + �t� , �54�

we have from Eq. �37�

H�
 + �� + max�0,H�
 + 2k� − C − T�

− max�0,H�
 + 2k� − C�

= H�
� + max�0,H�
 − �� − C − T�

− max�0,H�
 − �� − C� . �55�

Compare Eq. �55� with Eq. �52�, and we finally find an exact
solution of Eq. �37� which presents a shock wave:

H�
� = C + T + max�T,
� − max�0,
 + 2T� , �56�

where 
= �2n+ t�T and C ,T�0. Figure 5 shows a kink so-
lution of Eq. �37� given in Eq. �56�.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we propose the ultradiscrete optimal veloc-
ity model, a cellular-automaton model which inherits the
properties of the OV model such as the linear instability, and
moreover have an exact solution of the model which de-
scribes a traffic jam propagating to the upper stream like a
shock wave. Since the OV model is defined by a nonlinear
differential equation, ordinary discrete schemes do not work

to obtain the corresponding difference equation. Meanwhile,
it is well known that the OV model, around the critical point,
reduces to the mKdV equation, a soliton equation, in a scal-
ing limit. Therefore, we apply the theory of soliton equations
to the OV model so that the CA model obtained maintains
the relation between the OV model and the mKdV equation
described below.

Figure 6 shows our scheme of the present study. At the
beginning, we pay attention to the fact that if one considers
traveling-wave solutions, the delay OV model Eq. �17� coin-
cides with the sdmKdV equation or the modified Lotka-
Volterra equation �Eq. �7��, as well as that the OV model Eq.
�2� reduces to the mKdV equation �Eq. �9�� in a scaling limit
Eq. �5�. We therefore adopt the delay OV model Eq. �17� as
the semidiscrete OV model and then have the fdOV model
Eq. �30� from the fdmKdV equation �Eq. �6��; we need to
establish the fdOV model before the udOV model. Thus, we
have the udOV model Eq. �37� and an exact shock solution,
and one sees the validity of the soliton theory for study of
traffic flow.

We find that particles in the udOV model have two spe-
cific values, determined by the inflection point of the OV
function and the delay time �or sensitivity�, to distinguish
safe headways. The time delay is required for particles to
accelerate/decelerate to have a safe headway, meanwhile it
admits that each particle foresees the next motion of its front
particle.

Simulation results show that the udOV model has a tran-
sition region where it is difficult for a uniform flow to main-
tain the headway under perturbations, and which causes in-
stability of high-flux traffic. It is remarkable that a CA model
for traffic flow has such instability. Moreover, we find that
the system has three distinct states: a traffic jam �absolutely
unstable�, an oscillatory pattern �stop-and-go�, and a free
flow �convectively unstable� according to the uniform head-
way, which one often comes across especially in real high-
way traffic.

From the above results, we conclude that the time delay
and foreseeing cause characteristic phenomena of traffic flow
including the linear instability of high-flux traffic. We stress
that the distinct phenomena are typical of traffic flow �or
self-driven particles� but not of Newtonian mechanics.

In the present paper, we mainly focus on the theoretical
study and do not have the necessity to have the model in

40

2

6

10

Hnt

50 60
n

t=-100

40

2
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10

Hnt

50 60
n

t=-99

(b)(a)

FIG. 5. �Color online� An exact solution of the udOV model
given in Eq. �56� with C=4, T=3; �a� t=−100, �b� t=−99. This
shows that traffic jam �region of small headways� propagates to the
upper stream, taking the shape of �a� at even time, and �b� at odd
time.

mKdV

semidiscrete

full-discrete

ultradiscrete

(12) = (6) = (24)

(17) = (15)

(30)

OV

(9)

(14)

(7) = (21)

continuous

(8)

(37)

(2)

(1)
(16)

(31)(13) (32)

(20)

(5)

(25)
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FIG. 6. Scheme of the present study. The numbers indicate the
equations in previous sections.
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position representation. However, in some cases the spa-
tiotemporal patterns are also required. It will be discussed in
subsequent publications.
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APPENDIX: KINK SOLUTION OF THE FDMKDV
EQUATION

We show that the full-discrete one-kink solution Eq. �44�
surely reduces to the semidiscrete one-kink solution Eq. �40�
in the limit �→0. First, we solve Eq. �45� in L and take one
of the two solutions such that � in Eq. �44� does not diverge
as �→0:

L =
K2 − 2�K + 1 + �K − 1���K + 1�2 − 4�K

2�1 − ��K2

= 1 +
K − 1

K + 1

�

a
+ O��2� . �A1�

Consequently, we have

L1/� → exp
K − 1

a�K + 1�
�� → 0� . �A2�

Next, we transform Eq. �44� into

−
1

2a

�LK − 1��K + 1�
LK2 − 1

1 −
K − 1

K + 1

LtKj − 1

LtKj + 1
� . �A3�

Let K=e2�, and we finally have

v j
−t/� →

�→0
−

1

2a
+

tanh �

2a
tanh	�j −

tanh �

2a
t
 . �A4�
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